73 research outputs found

    Permutation Symmetry Determines the Discrete Wigner Function

    Full text link
    The Wigner function provides a useful quasiprobability representation of quantum mechanics, with applications in various branches of physics. Many nice properties of the Wigner function are intimately connected with the high symmetry of the underlying operator basis composed of phase point operators: any pair of phase point operators can be transformed to any other pair by a unitary symmetry transformation. We prove that, in the discrete scenario, this permutation symmetry is equivalent to the symmetry group being a unitary 2-design. Such a highly symmetric representation can only appear in odd prime power dimensions besides dimensions 2 and 8. It suffices to single out a unique discrete Wigner function among all possible quasiprobability representations. In the course of our study, we show that this discrete Wigner function is uniquely determined by Clifford covariance, while no Wigner function is Clifford covariant in any even prime power dimension.Comment: 5+2 pages, connection with unitary 2-designs added, accepted by Phys. Rev. Lett. as Editors' Suggestio

    Quasiprobability representations of quantum mechanics with minimal negativity

    Full text link
    Quasiprobability representations, such as the Wigner function, play an important role in various research areas. The inevitable appearance of negativity in such representations is often regarded as a signature of nonclassicality, which has profound implications for quantum computation. However, little is known about the minimal negativity that is necessary in general quasiprobability representations. Here we focus on a natural class of quasiprobability representations that is distinguished by simplicity and economy. We introduce three measures of negativity concerning the representations of quantum states, unitary transformations, and quantum channels, respectively. Quite surprisingly, all three measures lead to the same representations with minimal negativity, which are in one-to-one correspondence with the elusive symmetric informationally complete measurements. In addition, most representations with minimal negativity are automatically covariant with respect to the Heisenberg-Weyl groups. Furthermore, our study reveals an interesting tradeoff between negativity and symmetry in quasiprobability representations.Comment: 5.2+3 pages; accepted by Phys. Rev. Let

    Multiqubit Clifford groups are unitary 3-designs

    Full text link
    Unitary tt-designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary tt-designs with t3t\geq3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension~4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful to studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest to studying quantum computation.Comment: 7 pages, published in Phys. Rev.
    corecore